Dalam matematika dan komputasi, algoritma atau algoritme merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap dari awal hingga akhir. Masalah tersebut dapat berupa apa saja, dengan catatan untuk setiap masalah, ada kriteria kondisi awal yang harus dipenuhi sebelum menjalankan algoritma. Algoritma akan dapat selalu berakhir untuk semua kondisi awal yang memenuhi kriteria, dalam hal ini berbeda dengan heuristik. Algoritma sering mempunyai langkah pengulangan (iterasi) atau memerlukan keputusan (logika Boolean dan perbandingan) sampai tugasnya selesai.
Desain dan analisis algoritma adalah suatu cabang khusus dalam ilmu komputer yang mempelajari karakteristik dan performa dari suatu algoritma dalam menyelesaikan masalah, terlepas dari implementasi algoritma tersebut. Dalam cabang disiplin ini algoritma dipelajari secara abstrak, terlepas dari sistem komputer atau bahasa pemrograman yang digunakan. Algoritma yang berbeda dapat diterapkan pada suatu masalah dengan kriteria yang sama.
Kompleksitas dari suatu algoritma merupakan ukuran seberapa banyak komputasi yang dibutuhkan algoritma tersebut untuk menyelesaikan masalah. Secara informal, algoritma yang dapat menyelesaikan suatu permasalahan dalam waktu yang singkat memiliki kompleksitas yang rendah, sementara algoritma yang membutuhkan waktu lama untuk menyelesaikan masalahnya mempunyai kompleksitas yang tinggi.
Sejarah Algoritma
Algoritma adalah jantung ilmu komputer atau informatika. Banyak cabang dari ilmu komputer yang diacu dalam terminologi algoritma, misalnya algoritma perutean (routing) pesan di dalam jaringan komputer, algoritma brensenham untuk menggambar garis lurus (bidang grafika komputer), algoritma Knuth-Morris-Pratt untuk mencari suatu pola di dalam teks (bidang information retrievel), dan sebagainya.
Ditinjau dari asal usul kata, kata "algoritma" sendiri mempunyai sejarah yang cukup aneh. Kata ini tidak muncul di dalam kamus Webster sampai akhir tahun 1957. Orang hanya menemukan kata algorism yang berarti proses menghitung dengan angka - Arab. Anda dikatakan algorist jika Anda menggunakan angka Arab. Para ahli bahasa berusaha menemukan asal kata algorism ini namun hasilnya kurang memuaskan. Akhirnya para ahli sejarah matematika menemukan asal mula kata tersebut. Kata algorism berasal dari nama penulis buku Arab yang terkenal, yaitu Abu Ja'far Muhammad ibnu Musa al-Khuwarizmi (al-Khuwarizmi dibaca orang Barat menjadi algorism). al-Khuwarizmi menulis buku yang berjudul Kitab aljabar wal-muqabala, yang artinya "Buku pemugaran dan pengurangan" (The book of restoration and reduction). Dari judul buku itu kita juga memperoleh akar kata "aljabar" (algebra). Perubahan dari kata algorism menjadi algorithm muncul karena kata algorism sering dikelirukan dengan arithmetic, sehingga akhiran -sm berubah menjadi -thm. Karena perhitungan dengan angka Arab sudah menjadi hal yang sudah biasa/ lumrah, maka lambat laun kata algorithm berangsur-angsur dipakai sebagai metode perhitungan (komputasi) secara umum, sehingga kehilangan makna aslinya. Dalam bahasa Indonesia, kata algorithm diserap menjadi "algoritma".
Konstruksi Dasar
1. Runtunan
2. Pemilihan
3. Pengulangan
Jenis-jenis Algoritma
Terdapat beragam klasifikasi algoritma dan setiap klasifikasi mempunyai alasan tersendiri. Salah satu cara untuk melakukan klasifikasi jenis-jenis algoritma adalah dengan memperhatikan paradigma dan metode yang digunakan untuk mendesain algoritma tersebut. Beberapa paradigma yang digunakan dalam menyusun suatu algoritma akan dipaparkan dibagian ini. Masing-masing paradigma dapat digunakan dalam banyak algoritma yang berbeda.
- Divide and Conquer, paradigma untuk membagi suatu permasalahan besar menjadi permasalahan-permasalahan yang lebih kecil. Pembagian masalah ini dilakukan terus menerus sampai ditemukan bagian masalah kecil yang mudah untuk dipecahkan. Singkatnya menyelesaikan keseluruhan masalah dengan membagi masalah besar dan kemudian memecahkan permasalahan-permasalahan kecil yang terbentuk.
- Dynamic programming, paradigma pemrograman dinamik akan sesuai jika digunakan pada suatu masalah yang mengandung sub-struktur yang optimal (, dan mengandung beberapa bagian permasalahan yang tumpang tindih . Paradigma ini sekilas terlihat mirip dengan paradigma Divide and Conquer, sama-sama mencoba untuk membagi permasalahan menjadi sub permasalahan yang lebih kecil, tapi secara intrinsik ada perbedaan dari karakter permasalahan yang dihadapi.
- Metode serakah. Sebuah algoritma serakah mirip dengan sebuah Pemrograman dinamik, bedanya jawaban dari submasalah tidak perlu diketahui dalam setiap tahap; dan menggunakan pilihan "serakah" apa yang dilihat terbaik pada saat itu.
0 komentar:
Posting Komentar